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The Crystal Structure of CaKAsO,.8H,O
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CaKAsO,.8H,0 crystallizes in the orthorhombic unit cell a=7-146 (1), b=11-696 (2), c=7-100 (2) A
at 25°C with cell contents of 2[CaKAsO,.8H,0)]. The density calculated from the X-ray data is
2:027 g.cm™?%; that calculated from the refractive indices is 2:10 g.cm~3. The structure has been refined
to R,,=0-037, R=0-043 in space group Cm2m, using 1023 observed reflections measured on an auto-
mated diffractometer and corrected for absorption. Allowance was made for anomalous dispersion and
secondary isotropic extinction. All ions in CaKAsO,.8H,0 are completely hydrated. Ca coordinates
to eight water oxygen atoms with Ca- - -O distances in the range 2-460 (5) to 2:490 (3) A. K coordinates
to eight water oxygen atoms with K- - - O distances ranging from 2-756 (3) to 2:960(7) A. The coordina-
tion polyhedron of Ca shares one face of four water molecules and two edges with neighboring coor-
dination polyhedra of K. Each oxygen atom of the AsO, ion is the acceptor in hydrogen bonds from
four water molecules and forms no bonds with the cations. The two crystallographically different As—-O
distances in the AsO2~ ion are 1-682 (4) and 1-684 (4) A when uncorrected for thermal motion, and
1-690 and 1-692 A with the riding model correction. The structure of CaKAsQ;.8H,0 is related to
that of MgNH,PO,.6H,0, struvite. This structural type may be common to several calcium phosphates

and related compounds.

Introduction

In crystallization, nucleation is an important step which
could conceivably control the identities and forms of
materials that grow to macroscopic sizes. For various
reasons (Dickens & Brown, 1970), studies of hydrates
may give valuable clues to the existence of possible
precursors or nuclei of crystallization in aqueous en-
vironments. In the formation of inorganic deposits
in vivo, hydration of ions is likely to play a significant
role, and the formation of ion pairs or higher complex-
es may be important. We found in our study of
CaCO0;.6H,0 (Dickens & Brown, 1970) that in the
crystal structure, the Ca®* and CO3~ ions are all in
[Ca?*, COZ%7]° ion pairs which are completely sur-

* Director, American Dental Association Research Unit
at the National Bureau of Standards, Washington, D. C.
20234, U.S.A.

rounded by water molecules. To examine the hydra-
tion of Ca and the possible retention in the solid state
of ion complexes involving XO, ions, in this case
AsO2~, we have determined the crystal structure of
CaKAsO,.8H,0.

Data collection and structure refinement

CaKAsO,.8H,0 was prepared by mixing 20 cm® of
01 M.17! CaCl, solution, 25 cm® 1-0 M .17! tripotas-
sium citrate solution and 10 cm® 3-0 M .1~ KOH solu-
tion at 0°C and then adding 10 cm? 0-2 M.17!
K,HAsO, solution. The resultant mixture was kept at
0°C; precipitation of CaKAsO,.8H,0 began after
about two hours. This procedure is an adaptation of
that given for CaNH,PO,.7H,O by Lehr, Brown,
Frazier, Smith & Thrasher (1967).

The crystal used in the data collection was a rec-
tangular plate with dimensions 006 x0-10x0-12
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mm. It was mounted on the goniometer using the
procedure described by Dickens & Bowen (1971a).

Formula (ideal): CaKAsO,.8H,0 .
Cell at 25°C: orthorhombic .
a=7146 (1) A

b=11-696 (2)

¢=7-100 (2)

Volume =593-4 A3 .

Space-group Cm2m(C32); cell contents
2[CaKAsO,.8H,0].

Reciprocal lattice extinctions: A+k=2n+1 for hkl.

Density calculated from unit cell =2-027 g.cm™>.

Density calculated from refractive indices=2-10

g.cm™3 (TVA, unpublished data).

In general, the data collection and data processing pro-
cedure given by Dickens & Bowen (1971a, b) were
followed. The 6-26 scans here were carried out at
0-5° per min for 26. Each background was counted for
40 sec. Absorption corrections were made assuming
#(Mo) =39-6 cm ™!, The maximum and minimum trans-
mission factors were 0-83 and 0-66 respectively. 2163
reflections were collected from the hkl and hk/ octants
of the reciprocal lattice and were merged into a unique
set of 1071, of which 1023 are ‘observed’ and 48 are
‘unobserved’. Equivalent reflections agreed within 3-4
% on average. ‘Unobserved’ reflections are those less
than 2g(/) above background.

The structure of CaKAsO,.8H,0 was solved from a
sharpened Patterson map [calculated from the E2—1
coefficients, where E is the quasi-normalized structure
factor (Dickinson, Stewart & Holden, 1966)] and from
subsequent F, electron densit:’ syntheses. The scattering
factors used were those of the neutral atoms; they were
taken from International Tables for X-ray Crystallogra-
phy (1962) and McWeeny (1951) for the XRAY67
(Stewart, 1967) refinements and from Cromer & Mann
(1968) for the refinements using the program RFINE,
written by L. W, Finger of the Carnegie Institute of
Washington. The structure with hydrogen atoms ex-
cluded was refined isotropically to R,,=0-067, R=0-068
using XRAY67. The quantity minimized was > w(F,—
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F.)?. Unobserved reflections calculating more than
20(F,x) were included. Three cycles of anisotropic re-
finement varying all unconstrained parameters de-
creased R,, to 0-054 and R to 0-056.

A difference electron-density synthesis was calcu-

lated. The hydrogen positions were taken from peaks
equivalent to 0-5 to 0-9 electrons within 1-2 A of the
water oxygen atoms. The structure including hydrogen
atoms with variable positional parameters but with
hydrogen thermal parameters fixed at B=1-0 A? was
then refined anisotropically to R,,=0-040, R=0-047 in
three cycles using the least-squares program RFINE.
Correction was made for secondary isotropic extinc-
tion. Although the environments of the oxygen atoms
in the AsO, group are not very different, the surprising
result that the two crystallographically different
As- - -O distances were 1-664 (4) and 1-701 (4) A was
obtained. After a correction for anomalous dispersion
was included in the refinement, the As- - -O distances
became essentially equal, as would be expected from a
consideration of their similar environments. The val-
ues of /" and " were taken from Cromer (1965). The
parameters from the third cycle (R, =0-037, R=0-043)
of this series of refinements are given in Table 1. (The
values for refinement of the other enantiomorph are
R, =0049, R=0-054.) The observed and calculated
structure factors are given in Table 2. The average
shift/error in the last cycle was 0-19 excluding hydrogen
parameters and 0-35 for all parameters. The standard
deviation of an observation of unit weight,
[Sw(|F,| —|F.|)?/(1071 — 57)]*/2, was 1-60 which has been
applied to the standard deviations quoted in the
tables. The largest correlation coefficient was 0-41 be-
tween (B,,, B;,) of O(4); all others were below 0-17.
Because the isotropic secondary extinction parameter
refined to —0-00000100 (7) cm, it was constrained to
zero in the final refinements.

The largest peaks in a weighted difference electron-
density synthesis calculated at this stage were equiv-
alent to about 1 an electron between As and O(1),
and about 1 an electron at 0-5, 0-35, 0-25. Because of
its proximity to As and O(1), the former peak cannot
be attributed to an atom. The latter peak is in a void in
the structure, but is, however, only 2:30 A from O(5),

Table 1. Atomic parameters of CaKAsO,.8H,0

Figures in parentheses are standard errors in last significant figure quoted, and were computed in the final cycle of full-matrix
least-squares refinement.

Thermal parameters are in the form exp [— (a*2B11h2+b*2By2k2 + c*2B3312 + 2a*b* Bishk + 2a*c* Byshl+ 2b*c* B3kl )).

x y z By Bj; Bj3 Bz B3 B3

Ca mm* 0-0 0-3750 (1)  0-5 1[116 (4)  1-20(5)  1-04 (5) - - -

K mm 05 0-1877 0-5 1-40 (5) 1-:94 (7) 2:33 (7) - - -

As mm 00 0-0 00 089 (2) 077(2) 087(2) - - -

a(l)ym 00 0-0793 (4) 0-1977 (5) 1-9 (1) 1-4 (1) 1-:2 (1) - - —0-4 (1)
O@2)ym 03027 (5) 0:4212(4) 00 1-:2 (1) 19 (2) 1-7(1) —=0-5(1) - -

o3)ym 05 0-0031 (6) 0-2235 (5) 1-9 (1) 2:4 (1) 1-4 (1) - - —0-1(2)
O@4)m 0-2228 (5) —0-0003 (7) O 1:6 (1) 3:2(2) 1-8 (1) 1-0 (2) - -

0(5) ! 02119 (4) 02697 (3) 02824 (4) 22(1) 1-3 (1) 1-7(1) =01(1) 009(7) —007(8)

* Symmetry of atom site. Equivalent positions: x,y,z; —x,y,z; —Xx,¥,—2z; Xy;—2; ¥+ x,3+p,2z; 1—x3+y,2; +—x,

34y, —z; +x, 3+y, —z
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Table 2. Observed and calculated structure factors for CaKAsO,.8H,0

Columns are A, 10F,, 10F,; and phase in millicycles. ‘Unobserved’ reflections are marked by *, F. does not include corrections
for extinction or anomalous dispersion. F, and F, are on an absolute scale.
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2:39 A from O(2), 2-30 A from H(3) and 2:65 A from The structure as refined in space-group Cm2m re-
K. Thus, because it does not seem to fill all the re- quires that the chemical formula contain @igh} water
quirements of any one chemical species, it is attributed molecules unless there are statistical vacancies in some
to the background. of the water positions. In the earlier stages of this
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work we believed that the formula contained seven
molecules of water, by analogy with CaNH,AsO,.
7H,0. The thermal parameters of the oxygen atoms of
the water molecules are fairly close to those of the
oxygen atoms in the AsQ, ion and thus the formula is
CaKAsO,.8H,0 with no statistical vacancies. To con-
firm this, a sample of CaKAsO,.8H,O was heated
quickly (~1 min) to constant weight at 400°C; a
weight loss of 84 (3) moles of water per formula
weight was obtained.

Three sets of hydrogen positions, (i) from the differ-
ence electron density synthesis, (ii) from the least-
squares refinements, and (iii) positions assuming idea-
lized water geometry, calculated as described in Dic-
kens & Brown (1970), are given in Table 3. All dis-
tances and angles involving hydrogen in the tables or
the text were obtained using the calculated hydrogen
positions.

Description of the structure

The Ca, K and As atoms lie at the intersections of
mirror planes parallel to (100) and (001). The oxygen
atoms of the O(3) and O(4) water molecules lie on the
(100) and (001) mirror planes respectively. The O(5)
water molecule is in a general position.

All the ions in CaKAsO,.8H,0 are completely
surrounded by water molecules, 21d thus there are no
direct bonds between ions themselves. There are eight
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water molecules in the coordination polyhedra of the
Ca and K ions and 16 in the coordination polyhedron
of the AsO, ion. Each of the water molecules in the
structure is bonded to one Ca, one K and two AsO,
ions. Each Ca coordination polyhedron shares a face
of four water molecules with one K coordination
polyhedron and edges with two other K coordination
polyhedra.

The Ca ion environment

The environment of the Ca ion, which lies on the
intersection of two mirror planes, is detailed in Table 4
and Fig. 1. The Ca ion is coordinated to eight oxygen
atoms of water molecules arranged in an approxi-
mately square antiprism. The range of Ca---O dis-
tances, 2-460 to 2-490 A, is unusually small and the
bonding to all these oxygen atoms is of normal
strength. The shortest O---O distance in this poly-
hedron is 2:789 A for O(3)- - -O(4). All other O---O
distances are a little over 3 A. The shortest Ca---O
distances are to the approximate square of water
oxygen atoms O(3'), O(3!!), O(4}), O(4) (see Ca' in
Fig. 1), which is also part of the K ion environment.
However, these oxygen atoms are the weakest bonded
to K. The longest Ca---O bonds are to those water
oxygen atoms in edges common to the coordination
polyhedra of Ca’ and K!. These oxygen atoms, O(5')
and O(5"), are strongly to K, though not as strongly
as they are to Ca'.

Table 3. Probable positions of the hydrogen atoms in CaKAsQO,.8H,0

The calculated hydrogen positions were used to obtain distances mentioned in the tables and the text.

Difference synthesis Least-squares refinements Calculated

x y z x y z x y z
H®1) 039 —-0-02 014 0-395 (7) 0-001 (6) 0-150 (7) 0394 —-0-023 0-153
H(2) 0-14 0-00 043 0139 (7) —0-009 (6) 0-416 (7) 0-152 0-025 0-393
H(3) 0-25 0-31 0-21 0-236 (7) 0-320 (5) 0-192 (8) 0-235 0-316 0-174
H(4) 0-14 0-21 0-25 0-150 (9) 0-246 (6) 0-239 (10) 0-138 0-207 0-237

Fig. 1. A stereoscopic illustration of the crystal structure of CaKAsOy4.8H,0. The origin of the crystallographic coordinate
system is marked by *. The atoms with Roman numerals are referred to in the table of interatomic distances; these Roman

numerals are lower case in the text.
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Table 4. Interatomic distances and angles in
CaKAsO,.8H,0

The cation environments

Ca, 04!, 4i)) 2:460 (5) A
Ca, O(3i, 3ii) 2:470 (6)
Ca, O(5i, 511 5iii) 5iv) 2:490 (3)
K, O(5i, 5t, 5v, 5vi) 2:746 (3)
K, O(3iii, 3iv) 2-919 (6)
K, O(411, 41v) 2:960 (7)
The AsO4 group and its environment
As-0O(1,1) 1:682 (4)
1-684 (a)
1-690 (b)
As-0(2,2) 1684 (4)
1-685 (a)
1-692 (b)
O(1)-As-0O(1) 113-1 (3)°
O(1)-As-0(2) 107-5 (1)
0(2)-As-0(2) 113-7 (3)
Oo(1), O(1) 2-807 (7)
O(1), 0(2) 2-715 (5)
0(2), 0(2) 2-820 (7)
O(1), H(2i, 2ii) 1-87
O(1), H4!, 4i1) 1-81
O(1), O(sii, §iv) 2:759 (4)*
O(1), O(4iv, 4v) 2-830 (4)*
O(2). H(1i, DT 1-89
0O(2), H(3i, 3)f 1-81
0(2), O(5vi) 2755 (4)*
0(2), O(3iti) 2-848 (4)*
The environments of the water molecules
H(1), O(3), H(1) O(3iif) Calt 2:469 (6) A
O(3iit), Ki 2918 (6)
O(3if), 0(21, 2) 2-848 (4)*
H(1), 0O 1-89
O@3)—H(1)-0(2) 175-7°
0(2), 0(3)-0(2) 98-8 (2)
H(2), O(4), H(2) O(4iv), Cait 2-459 (5)
0(4iv), Ki 2:960 (7)
0O(4iv), O(1, 1) 2-830 (4)*
H2), O(1) 1-87
O(4)—H(2)-0(1) 175-6°
O(1), O4)-0O(1) 987 (2)
H(3), O(5), H(4) O(5Y), Cat 2:490 (3)
O(s5Y), K! 2:746 (3)
O(5), 0(2v) 2-755 (4)*
0(5Y), O(1) 2:759 (4)*
H(3), 0(2v) 1-81
H(4Y), O(1) 1-81

O(5) -H(3), O(2) 168-7°
O(5) —H(4), O(1) 1687
Oo(1), 0O(5), 0(2) 119-4 (1)

Figures in parentheses are standard deviations in the last digit
and were calculated from the standard deviations in the atomic
positional parameters. They include terms from the variance—
covariance matrix.

(a) Lower bound and (b) riding model corrections for thermal
motion (Busing & Levy, 1964).

* Hydrogen bond between these two oxygen atoms.

T These bonds may be seen in Fig. 1 if the environments of
0O(2) and O(21) on the right hand side of the AsO, ion in the
center of the figure are combined. O(2) and O(2!) are related
by the ¢ translation.

The K ion environment
The details of the environment of the K ion are

CRYSTAL STRUCTURE OF CaKAsO,.8H,0

given in Table 4 and Fig. 1. K is bonded to eight water
oxygen atoms arranged in a distorted square anti-
prism. As expected, K is relatively far (2919, 2:960 A)
from water oxygen atoms O(3"1), O(3) and O(4}),
O(4%) (see K! in Fig. 1), which are the closest water
oxygen atoms to Ca'l, The K ion instead forms
stronger K- -0 (2:746 A) bonds to the O(5%), O(5'),
O(5Y), O(5¥1) water oxygen atoms in the face of the
coordination polyhedron opposite the O(3), O(4) face.
The shortest K- - -Ca distance, K!---Cali=3-66 A, is
along [010], across the shared face comprised of water
oxygen atoms of types O(3!), O(3") and O(4i!),
O4).

The AsO, group and its environment

The details of the AsO, group and its environment
are given in Table 4. The two unique As-O distances
are not significantly different, which is consistent with
the lack of cations and very strong hydrogen bonds in
the environment of the two oxygen atoms. The two
0O-As-0 angles bisected by the mirror planes are signi-
ficantly different from the other O-As-O angles. The
reason seems to be that the force components of the
hydrogen bonds from the water molecules are all
such as to pull O(1) and O(2) away from the mirror
planes to angles greater than the tetrahedral angle.
The fact that the O(1)-As-O(2) angle of 107-5° is
less than the tetrahedral angle is therefore a concomi-
tant result. The AsO, group is extensively hvdrogen
bonded, O(1) and O(2) each being the acceptor in four
hydrogen bonds (Table 4).

The environments of the water molecules

The environments of the water molecules are de-
tailed in Table 4. Water oxygen atoms O(3) and O(4)
lie on mirror planes; O(5) is in a general position. The
water molecules in Fig. 1 and in Table 4 have been
given the idealized geometry O-H=0-958 A and
£/ H-O-H=104-5°, as described in Dickens & Brown
(1970). The hydrogen bonds were made as linear as
possible in the calculation of the probable hydrogen
positions. The smallest intermolecular H---H dis-
tances are 1-972 for H(4)---H(4'), 2-102 for H(1)- - -
H(3), and 2:173 A for H(1)- - -H(1’) and H(2)- - - H(2").
All the oxygen atoms of the water molecules are
bonded to the Ca and K ions and all the hydrogen
atoms are hydrogen bonded to the oxygen atoms in the
AsO, group. There is no hydrogen bonding between
water molecules. The O(3) and O(4) water molecules
are bonded strongly to Ca, less strongly to K, and are
the donors in hydrogen bonds of average strength to
0O(2) and O(1) of the AsO, group. The O(5) water
molecule is bonded slightly less strongly to Ca but
more strongly to K than are O(3) and O(4), and ap-
pears to form slightly stronger hydrogen bonds to the
AsO, group. As expected in order to minimize repul-
sions, the cations and hydrogen atoms are arranged in
approximately tetrahedral directions about each water
oxygen atom,
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Discussion

The average As-O distance in CaKAsO,.8H,O is
1-691 A, corrected for thermal motion, and the indi-
vidual As-O distances are equal within experimental
error. The essentially equal As—O distances (obtained
after correction for anomalous scattering) are expected
from the close similarity of the environments of the
oxygen atoms of the As—O group. Inclusion of anoma-
lous scattering effects, therefore, resulted in a refine-
ment of the As—-O bond lengths from unreasonable to
reasonable values.

Other recently determined structures which contain
AsO, groups are CaHAsO, H,O, haidingerite (Calleri
& Ferraris, 1967), 2H;AsO, H,O (Worzala, 1968),
CaHAsO,.2H,0, pharmacolite (Ferraris, 1969),
Na,HAsO, 7H,0 (Baur & Khan, 1970) and CaHAsO,,
weilite (Ferraris & Chiari, 1970). The average As-O
distance in CaHAsQ,.H,0, 1-686 A, is in good agree-
ment with that observed in CaKAsO,.8H,0, as are
the averages, 1:690 and 1-679 A, of the two crystallo-
graphically different AsO, groups in CaHAsO,. The
average value in Na,HAsO,.7H,0, 1:678 A, is slightly
shorter than the above values. The average value of
As-O in the imprecisely determined structure of
2H;AsO,.H,0 is 1-652 A, but the individual As-O
distances range from 1-594 to 1:695 A and undoubtedly
suffer from systematic error due to uncorrected ano-
malous scattering. The environments of the AsO,
groups in the above compounds differ from that in
CaKAsO, 8H,0 by cation coordination and covalent
bonding of H to the oxygen atoms of the AsO, group,
so that comparison of individual As—O bond lengths
is not meaningful. The average value of the As-O
bond lengths seems to be essentially constant, as has
been suggested for PO, groups by Cruickshank (1961)
and denied by Baur & Khan (1970). It is now generally
accepted that standard deviations in derived structural
parameters may be too low by a factor in the range 14
to 2 for the positional parameters and 3 to 4 for the
thermal parameters (Hamilton & Abrahams, 1970).
When these factors are considered, the average values
of As-O distances in AsO, groups may be considered
to be constant within experimental error. The standard
deviation of the average estimated from the spread of
the individual values is typically in the range 0-01-0-02
A for PG}~ groups in various structures. Thus the
concept of constant average X-O distance in XO,
groups may not be very useful.

The complete hydration of the Ca and K ions in
CaKAsO, .8H,0 differs from that of another highly
hydrated calcium salt, CaCO;.6H,0 (Dickens &
Brown, 1970), where all cations are in [CaCQO;]° ion
pairs. Evidence has been given for ion-complexes of
calcium and phosphate ions in solution (Gregory,
Moreno & Brown, 1970; Childs, 1970). The very
strong hydrogen bonding found in the crystal structure
of Ca(H,POQ,), (Dickens, Prince, Schroeder & Brown,
1972) suggests that complexes involving more than one
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PO, ion may sometimes be present in solution. How-
ever, discrete ion complexes involving Ca and/or PO,
or AsO, in the presence of water molecules have not
yet been found in the solid state.

Optical and unit-cell data of seven of the eight pos-
sible combinations of (Ca, Mg) (K, NH,) (PO,
AsQ,).nH,0, where n=6, 7 or 8 depending on the com-
bination, are given in Table 5. (We have prepared the
eighth combination, CaKPO,.#H,0, but it was very
unstable.) The four magnesium salts appear to be
isostructural in that they all have the space group
Pm2,n, their unit-cell dimensions are nearly the same,
and they all have six waters of hydration. The struc-
tural type is illustrated in Fig. 2, which is the crystal
structure of MgNH,PO,.6H,0, struvite (Whitaker &
Jeffrey, 1970a, b).

The two calcium-ammonium salts,
CaNH,PO,.7H,0 and CaNH,AsO,.7H,0, have slight-
ly larger unit cells than the magnesium salts (parti-
cularly in the length of ), but their Weissenberg pat-
terns clearly reveal that they are structurally related to
struvite. The increase in cell volume is associated with
the greater size of the divalent cation and the presence
of the seventh water. These salts have a lower symme-
try space group, P2, but it should be noted that the
twofold screw axis is also present in the four magnesium
salts. X-ray reflections of the two calcium salts tend
to be weak when A+k=2n+1, suggesting pseudo-
centering on the C face. This corresponds to the actual
centering in CaKAsO,.8H,0 and the pseudo-center-
ing on the C face apparent in the structure of
MgNH,PO,.6H,0 (Fig. 2). The presence of the
eighth molecule of waterin CaKAsO, 8H,O resultsina
significant increase in the length of ¢ and slight de-
creases in a and b, as compared to the other two
calcium salts; it also allows the space-group symmetry
to increase to Cm2m and makes it possible for each of
the AsO, oxygen atoms to be the acceptor in four
hydrogen bonds. It should also be noted that the »
glide operation in MgNH,PO,.6H,0 simulates the C
centering operation in CaKAsO,.8H,0.

Some crystallographic properties for
MgKAsO,.5H,0 (TVA, unpublished data),
Mg,KH(PO,),.15H,0 and MgHPO,.7H,0 (Lehr et
al., 1967) are given in Table 6. Systematic weaknesses
in the X-ray reflections of MgKAsO,.5H,0 suggest
that it has a pseudo-cell a third the size of its real cell.
This pseudo-cell closely resembles the pseudohexag-
onal cell of MgNH,PO,.6H,0, described by Whit-
aker & Jeffery (1970a), which corresponds to the primi-
tive cell of CaKAsO,.8H,0. The pseudo-cells of
MgKAsQ,.5H,0 and MgNHPO,.6H,0 are compared
in the following tabulation:

MgKAsQO,.5H,0
pseudo-cell

MgNH,PO,.6H,0
pseudo-cell

a’ 63 A 6941 A

b’ 63 6588

¢ 12-39 12:274/2
120° 121-8°,
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It is plausible, therefore, that MgKAsO,.5H,0 has
the basic struvite structure. Octahedral coordination
of the magnesium atom by six independent water
molecules is no longer possible and it may be necessary
to involve an AsO, oxygen atom in the magnesium
coordination.
From a comparison of the formulae,

Mg, KH(PO,),.15H,0 (Table 6) is related in compo-
sition to MgNH,PO,.6H,0, struvite, and
MgHPO,.7H,0, the mineral phosphoroesslerite (Table
6). The unit-cell dimensions of Mg,KH(PO,),.15H,0
clearly resemble those of MgNH,PO,.6H,0, the
greater length of & (12-29 as compared to 11-10 A for
MgKPO,.6H,0) possibly reflecting the presence of
more waters of hydration in the same way as for the
salts in Table 5. The cell dimensions of MgHPO,.7H,O
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are simply related to those of MgNH,PO,.6H,0, but
the space group of this compound contains additional
symmetry elements (I and A4) so that a structural
relationship to the other two salts in Table 6 is not
readily apparent. If the formula is written
Mg(H;0)PO,.6H,0, the chemical relationship to
MgNH,PO,.6H,0 is obvious.

It is apparent that the relationships among these
compounds are in some instances quite complex and
depend on the details of the coordination of the cations
and the hydrogen bonding of the water molecules. For
example, the two structures, CaKAsO,.8H,0 and
MgNH,PO,.6H,0, differ considerably in detail. Each
of the Ca and K ions in CaKAsO,.8H,0 has a coor-
dination polyhedron of eight water molecules; the
Mg ion in MgNH,PO,.6H,0 is coordinated to only

Table 5. Some compounds with the ‘struvite-type’ structure
CaKAsO4 CaNH,PO* CaNH;AsO; MgNH;PO41 MgNH3AsO; MgKPO4* MgKAsOF}

.8H,0 .TH,04
Unit-cell dimensions, A
a 7-146 (1) 7-18
b 11-696 (2) 11:96
c 7-100 (2) 630
Angle S 90° 90-83°
Unit-cell volume, A3 593-4 541
Space group Cm2m P2,
Z, formula weights per unit cell 2 2
Density, calculated, g.cm~3
X-ray 2-027 1-70
Optical 2-10 1-71
Crystal morphology mm 2
Refractive indices: Nz 1497 1-495
Ny 1:516 1-:4975
N; 1-519 1-514
Optic sign (-) (+)
Optic angle 2V°: measured 4647 41-5
calculated 43 43
Dispersion r>v none
moderate
Optic axial plane (100) ~(001)
Extinction angle zAa
(in obtuse beta) - 6°
Orientation: Nz b b
Ny a ~a
N c ~c

* Lehr et al., (1967).
i TVA, unpublished work.
i Whitaker & Jeffrey (1970q).

.TH,O .6H,0 .6H,0 .6H,O0 .6H,0
7-27 6:941 (2) 7-00 6-91 7-03
12-:07 11-199 (4) 11-14 11-10 11-26
6-38 6137 (2) 6-14 6-21 623
91-47° 90° 90° 90° 90°
560 4770 479 476 493
P2, Pm2n Pm2n Pm2n Pm2n
2 2 2 2 2
1-91 1-71 1-99 1-85 2-08
1-86 171 1-95 1-91 215
2 mm mm mm mm
1-514 1-496 1-5184 1-477 1-503
1-516 1-497; 1-519 1-481 1-509
1-535 1-505 1-528 1-487 1:5094
(+) (+) (+) (+) (-)
34 41 25 - 22-5
36 45 29 79 29
none r>v none r>v r>v
weak weak moderate
~(001) (010) (001) (001) (001)
6-5° - - -~ -
b a b b b
~a b a a a
~c c c ¢ c

Table 6. QOther probable members of the struvite series

Mg, KH(POy4);.15H,0*

a 655 A

b 12-29

c 6-30

o 95-3°

B 89-7

y 93-6

Z 1

Crystal system triclinic
Space group P1 or PT

* Lehr et al. (1967).
1 Hégele & Machatschki (1939).
1 TVA, unpublished work.

MgHPO4.7H,01 MgKAsO4.5H,0%

11:35 A 1079 A
25-36 10-79
660 12-39
90° 90°
95 90
90 120
8 6
monoclinic hexagonal
A2la P3cl or P3cl
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six water molecules, and the NH, ion is coordinated
to five water oxygen atoms and one PO, oxygen atom.
The Ca and K ions share a square configuration of
water oxygen atoms; the Mg and NH, ions share a
triangular configuration. Each of the AsO, oxygen
atoms in CaKAsO,.8H,0 is the acceptor in four
hydrogen bonds; each of the PO, oxygen atoms in
MgNH,PO,.6H,0 is the acceptor in only three hydro-
gen bonds. The PO, group is positioned so that the
NH, ion hydrogen bonds to O(1) of the PO, group
(Whitaker & Jeffrey, 1970q, b) and to water oxygen
atoms. In CaKAsO,.8H,0, the AsO, group (in a
special position at the intersection of two mirror
planes) cannot have the orientation PO, has in
MgNH,PO,.6H,0, and its orientation is such that
the oxygen atoms are not near the K ion.

MgNH,PO, 6H,0 exists as the biomineral struvite
and has been found (Cohen & Ribbe, 1966; Whitaker,
1968) in excreta from various forms of life, in human
lungs (Porter, 1924), in human urinary calculi (Lons-
dale & Sutor, 1966) and rat urinary calculi (Rott-
schaeffer, Sax, Pletcher & Braude, 1970) and in canned
goods such as lobster (Ayres, 1942) and salmon
(Whitaker & Jeffrey, 1970a). After removal from the
environment in which it is formed, struvite changes
(Whitaker, 1968) into MgHPO,.3H,0, newberyite
(Sutor, 1967).

CaNH,PO,.7H,0, the calcium analogue of struvite,
is very unstable and decomposes to Cas(PO,);OH, the
major inorganic phase in the body, within minutes at

TH o

HE
2}

(23

HY 13

Ot H6! Aﬂé

HS
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room temperature, even in an aqueous environment.
(CaKAsO,.8H,0 was studied here because it was one
of the more stable members of the series.) Because of
its instability, CaNH,PO,.7H,0 probably does not
exist as a biomineral, since it would then have to be
stable at 37°C. The high hydration of the ions in
CaKAsO,.8H,0 and its fairly high rate of growth
(of the order of 1 mm.h~?) during its preparation near
0°C suggest that these salts are easily produced in an
aqueous environment under favorable conditions. It
is conceivable therefore that CaNH,PO,.7H,0 exists
transiently even at 37°C as a highly hydrated nucleus
important in the early stages of crystallization of bio-
minerals.

The structural relationships discussed above speak
for the stability of the struvite-type structure and for
the importance of the concept of structural types in
general. (‘Struvite-type’ is used here in the sense that
the structures show overall similarities, even though
they differ greatly in their fine details.) Thus the un-
usual chemistry of Ca and K ions completelysurrounded
by water molecules in CaKAsO,.8H,0 becomes less
surprising when placed in the context of the other
compounds in Table 5. The struvite-type structure is
the fifth major structural type to emerge in calcium
phosphates and related compounds. The five types are:

(i) Ms(XO0,);Y, the apatite type, of which there are
many examples (over 70 are listed in Wyckoff, 1965);
CagH,(PO,)s.5H,O (Brown, 1962; Brown, Smith,
Lehr & Frazier, 1962) and Ca,O(PO,), (Dickens,
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Fig. 2. The crystal structure of MgNH4PO,4.6H,0 in an orientation similar to that of CaKAsQO4.8H,0 in Fig. 1. The atomic
parameters for MgNH;PO4.6H,0 were taken from Whitaker & Jeffrey (1970a) with the exception of the thermal parameters
of O(5), which were non-positive definite as given. O(5) is designated here by a sphere. The b and ¢ axes of Whitaker & Jeffrey
have been interchanged to conform to those of CaKAsO4.8H,0 in Fig. 1. The star is at the origin of the coordinate system

chosen by Whitaker & Jeffrey.
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Kruger, Stewart & Brown, 1972) contain apatite-like
layers;

(ii) MXO,-sheet containing compounds:
CaS0,.2H,0 (Atoji & Rundle, 1958), CaHPO,.2H,0
(Beevers, 1958; Jones & Smith, 1962; Curry & Jones,
1970), Ca(H,PO,),.H,0 (Smith, Lehr & Brown, 1955;
MacLennan & Beevers, 1956; Jones & Cruickshank,
1961 ; Dickens & Bowen, 19715), CaHPO, (MacLennan
& Beevers, 1955; Jones & Cruickshank, 1961 ; Dickens,
Bowen & Brown, 1972), and probably
Ca,NH,H,(PO,),.2H,0, Ca,KH,(PO,),.2H,0 and
CaClH,PO,.H,0 (Brown, Smith, Lehr & Frazier,
1958) contain corrugated sheets; Ca,PO,Cl (Green-
blatt, Banks & Post, 1967; 1969) contains planar
sheets;

(iii) (M, N, [0)«(X0,), or glaserite-type after
K;Na(S0O,), (glaserite): Cas(PO,),SiO, (Dickens &
Brown, 1971a) and Ca,Mgy(Ca, Mg),(PO,),, (Dickens
& Brown, 1971b) both have structures related to the
glaserite structure, but with systematic cation vacan-
cies, denoted [ in the general formula above;
a-Cas(PO,), (Ando, 1958; Dickens & Brown, 19715),
CaNaPO, and Ca,Na,(PO,), (Ando & Matsuno, 1968),
and the high temperature solid solution between
«-Ca,Si0O, and &-Ca;(PO,), (Berak & Wojciechowska,
1956; Nurse, Welch & Gutt, 1959; Dickens & Brown,
1971a) may be other examples of glaserite-type struc-
tures with systematic cation vacancies; CaK;H(PO,),
(Brown & Fowler, 1967) is probably a monoclinic
distortion of the K;Na(SO,), structure.

(iv) M;3(XO0,),. Compounds with large cations such
as Ba;(PO,), and Sr3(PO,), (Zachariasen, 1948) and
Ba;(VO,), (Susse & Buerger, 1970) have high symme-
try and a small asymmetric unit. Cay(AsO,), (Gopal &
Calvo, 1971) and p-Cas(PO,), formed at ~1000°, or
~1350° with Mg?* as impurity (Dickens, Bowen &
Brown, 1971) crystallize in distorted versions of the
Bas(PO,), structure. Synthetic whitlockite, grown hy-
drothermally, (Ca, Mg),oH,(PO,),s, has an even more
distorted version of this structural type (Calvo & Ito,
1972).

(v) M#**N+XO0,.nH,0, or struvite-type after
MgNH,PO,.6H,0 (struvite), where » is 6 to 8 and N
is a larger cation than M. Several compounds which
probably have the struvite-type structures are given in
Tables 5 and 6.

Most of the optical and X-ray data on arsenates in
Table 5 have not been previously reported. The optical
data were obtained by James R. Lehr and A. William
Frazier and the X-ray data by James P. Smith in
association with one of the authors (W. E. Brown). We
are indebted to the Tennessee Valley Authority for
permission to publish those results. B. M. Wallace
grew the crystals used in this study; J. S. Bowen and
P. B. Kingsbury provided technical help; and C. K.
Johnson’s ORTEP program was used in drawing the
figures. We thank A. Whitaker and J. W. Jeffrey for
copies of their papers prior to their publication. This
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investigation was supported in part by Research Grant
DE00572 to the American Dental Association from
the National Institute of Dental Research and is part
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American Dental Association; The United States Army
Medical Research and Development Command; the
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Medicine, USAF; the National Institute of Dental
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The Crystal Structures of Free Radical Salts and Complexes. 1V.
(1,1’-Ethylene-2,2’-bipyridylium)**—(7,7,8,8-Tetracyanoquinodimethane -),

By T.SUNDARESAN AND S.C. WALLWORK

Department of Chemistry, University of Nottingham, England

(Received 23 June 1972)

Crystals of (C,,H,;>N,)?*(C,,;H,N;), are triclinic, space group PT, with lattice constants a=7-416,
b=13-371, c=14-625 A, a=87-800°, f=95-567°, y=95-200°, Z =2. The structure was solved by Patter-
son methods and refined by block-diagonal least-squares analysis using 4785 observed reflexions meas-
ured on a Hilger and Watts computer-controlled, four-circle diffractometer. The structure contains
columns of tetracyanoquinodimethane (TCNQ) ions packed in a plane-to-plane manner. The four
TCNQ ions per unit cell form two crystallographically independent centrosymmetric dimers. Within
the dimers there are short interplanar spacings of 322 and 3-26 A between the TCNQ jons indicating
charge-transfer interaction. Between the dimers there is a gap of 3-59 A.

Introduction

Molecular complexes containing ions and molecules
of 7,7,8,8-tetracyanoquinodimethane (TCNQ) include
some of the best electrically conducting organic com-
pounds known. As a part of a series of crystal struc-
ture determinations of TCNQ complexes to elucidate
the relationship between their structures and electrical
properties, the crystal structure of (1,1’-ethylene-2,2’'-
bipyridylium)?>* (TCNQ™), is reported.

Experimental
Crystal data
(C2H3Ny) (CpHyNy),, MW, 59246,
Triclinic,

a=7-416+0-001, b=13-371 + 0-001,
c=14625+0-001 A,

AC28B-12

o =87-800 + 0-004°, f=95-567 + 0-004°,
y=95-200 + 0-005°,

U=1436-8 A%;

D, =136 g.cm™3, Z=2, D,=1-37 g.cm 3,
F(000)=612.

Mo Ko (A=0-7107 A), 4=0-94 cm~1.
Space group PT (assumed).

Purple lath-shaped crystals of the complex salt were
obtained when 1 mole of 1,1’-ethylene-2,2'-bipyridy-
lium bromide (diquat bromide) and 2 moles of
LITCNQ were dissolved in hot acetonitrile and added
to an excess boiling solution of LITCNQ in acetoni-
trile and allowed to cool slowly to room temperature.
The space group and the unit-cell dimensions were ob-
tained initially from oscillation and Weissenberg pho-
tographs taken with the crystals rotating about all the
three crystallographic axes using Cu Ko radiation. The



